(k+5)(2k-3)=2k^2-1

Simple and best practice solution for (k+5)(2k-3)=2k^2-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (k+5)(2k-3)=2k^2-1 equation:


Simplifying
(k + 5)(2k + -3) = 2k2 + -1

Reorder the terms:
(5 + k)(2k + -3) = 2k2 + -1

Reorder the terms:
(5 + k)(-3 + 2k) = 2k2 + -1

Multiply (5 + k) * (-3 + 2k)
(5(-3 + 2k) + k(-3 + 2k)) = 2k2 + -1
((-3 * 5 + 2k * 5) + k(-3 + 2k)) = 2k2 + -1
((-15 + 10k) + k(-3 + 2k)) = 2k2 + -1
(-15 + 10k + (-3 * k + 2k * k)) = 2k2 + -1
(-15 + 10k + (-3k + 2k2)) = 2k2 + -1

Combine like terms: 10k + -3k = 7k
(-15 + 7k + 2k2) = 2k2 + -1

Reorder the terms:
-15 + 7k + 2k2 = -1 + 2k2

Add '-2k2' to each side of the equation.
-15 + 7k + 2k2 + -2k2 = -1 + 2k2 + -2k2

Combine like terms: 2k2 + -2k2 = 0
-15 + 7k + 0 = -1 + 2k2 + -2k2
-15 + 7k = -1 + 2k2 + -2k2

Combine like terms: 2k2 + -2k2 = 0
-15 + 7k = -1 + 0
-15 + 7k = -1

Solving
-15 + 7k = -1

Solving for variable 'k'.

Move all terms containing k to the left, all other terms to the right.

Add '15' to each side of the equation.
-15 + 15 + 7k = -1 + 15

Combine like terms: -15 + 15 = 0
0 + 7k = -1 + 15
7k = -1 + 15

Combine like terms: -1 + 15 = 14
7k = 14

Divide each side by '7'.
k = 2

Simplifying
k = 2

See similar equations:

| 4(-10+70)=44 | | 18-7+1=-9 | | -5x+8=-2x-22 | | 0.08a+0.09(100-a)=8.8 | | 3(5x+1)=26 | | r^2+r=240 | | h^2-148=16h | | 3x^4+x^3-12x^2-4x=0 | | 2x-6=2x-2 | | x=x^2-110 | | 2x-(3-2x)=4+3(2x) | | 3x-5=5x+10 | | -5+-5+2+-5+4=-9 | | f(x)=kx^2-6x+3 | | 1=-3x+20 | | 5p+4=-9 | | 11v+9=130 | | 7(x-4)[2]-18=10 | | -8m+59-3(m-3)=9m-(4m-5)-2m+7 | | 5y=5+2y+10 | | 16h^2-12h-36=0 | | 4(x-1)[2]=8 | | ln(5x)=ln(24-x) | | 7t-3=17 | | 3x-5x+4=10 | | 5n+5=3n+11 | | x+2+5+x^2=0 | | 2b-6b=24 | | 9x-30=6x+15 | | .2222222=fraction | | 54=10m-m | | 2x^2*3x-4=0 |

Equations solver categories